ON A SELP-SIMILAR SOLUTION OR A TWO-DIMENSIONAL FILTRATION PROBLEM IN REGIONS WITH MOVING BOUNDARIES

PMM Vol. 38, № 6, 1974, pp. 1136-1139
M. V. LUR'E and M. V. FILINOV
(Moscow)
(Received December 18, 1972)

Abstract

We determine a family of self-similar solutions of a two-dimensional problem involving the filtration of an incompressible liquid in regions with moving boundaries. Our work is based on a method developed by Galin for solving the problem of settling of water cones in a gravitational field [1-3]. Following this method, we reduce the problem to one of finding an analytic function of a complex variable and the time, which effects a conformal mapping of the filtration region onto a strip and satisfies a special nonlinear condition on the boundary. For the solution of a problem of this kind Galin proposed the method of succes.sive approximations.

1. Statement of the problem. We consider filtration of an incompressible liquid in a region bounded by two infinite contours, Γ_{1} and Γ_{2} (see Fig. 1 a), one of

Fig. 1 which we assume to be fixed and the other moving. We denote the moving contour by $\Gamma_{2}(t)$. We assume the pressure constant on both contours, $p=p_{0}$ on Γ_{1} and $n=0$ on Γ_{2}. This corresponds to the case when liquid is pumped into the stratum along contour Γ_{1} which is the boundary between the liquid and gas. The quantity $p_{0}=$ $p_{\Gamma_{1}}-p_{\Gamma_{2}}$ represents then the pressure drop with the pressure in the gas region being constant. The complex potential of such motion is of the form

$$
W(z, t)=-k W_{1}(z, t)
$$

where k is the coefficient of filtration. Moreover, $p(x, y, t)=\operatorname{Re} W_{1}(z, t)$. Let the function $z=z(t, \zeta)$ map the plane of the complex variable $z=x+i y$ conformally onto the strip $0 \leqslant \eta \leqslant 1$ in the plane $\zeta=\xi+i \eta$ in such a way that the contour Γ_{x} goes over into the line $\eta=0$ and the contour Γ_{2} goes over into the line $\eta=1$ (Fig. 1b). In addition, we require that $z(t, 0)=0$. The following conditions must then be satisfied on the boundary of this strip: $\zeta=\xi+i: \operatorname{Re}\left[W_{1}(\zeta, t)\right]=0$

$$
\zeta=\xi+i 0: \operatorname{Re}\left[W_{1}(\xi, t)\right]=p_{0}
$$

The solution of this problem in the ζ plane is obviously

$$
\begin{equation*}
W_{1}(\zeta, t)=i p_{0} \zeta+p_{0} \tag{1.1}
\end{equation*}
$$

It remains then to find the mapping function $z=z(\zeta, t)$. To obtain the conditions determining this function we use Galin's method [1-3]. Let the contour Γ_{2} be displaced normally by an amount $\varepsilon\left(\Gamma_{2}, t\right)$ in the time interval Δt. Then

$$
\varepsilon=\frac{v_{n}}{m} \Delta t=-\frac{k}{m} \frac{\partial p}{\partial n} \Delta t
$$

Here m is the porosity. Since it is clear that (see Eq. (1.1))

$$
\frac{\partial p}{\partial n}=\left|\frac{\partial W_{1}}{\partial \zeta}\right|\left|\frac{\partial \zeta}{\partial z}\right|=p_{0}\left|\frac{\partial \zeta}{\partial z}\right|=\frac{p_{0}}{|\partial z / \partial \xi|}
$$

we obtain the following expression for the amount of the displacement:

$$
\varepsilon=\frac{k p_{0}}{|\partial z / \partial \zeta|} \frac{\Delta t}{m}
$$

In using the mapping $z(t, \zeta)$ corresponding to time t, we note that the new position of the contour F_{2} in the ζ plane at the instant $(t+\Delta t)$ will differ from the line $\eta=$; by the amount of the normal displacement ε_{1}. It is obvious that

$$
\begin{equation*}
\varepsilon_{1}=\frac{\varepsilon}{|\Delta z / \partial \zeta|}=\frac{k_{P_{9}}}{|\partial z / \partial \zeta|^{2}} \frac{\Delta t}{m b} \tag{1.2}
\end{equation*}
$$

Let the function $\zeta_{1}(\zeta) \mathrm{map}$ the filtration region bounded by the contours Γ_{1}^{\prime} and $\Gamma_{2}{ }^{\text {r }}$ onto the strip $0 \leqslant \eta \leqslant 1$. Then the magnitude of the difference appearing within the brackets in the expression

$$
\zeta_{1}(\zeta)=\zeta+\left[\zeta_{1}(\zeta)-\zeta\right]
$$

will be small, and it is obvious that

$$
\begin{equation*}
\operatorname{Im}\left[\zeta_{1}(\zeta)-\xi\right]_{n=1}=\varepsilon_{1}, \quad \operatorname{Im}\left[\zeta_{1}(\zeta)-\zeta\right]_{n=0}=0 \tag{1,3}
\end{equation*}
$$

In addition $z(t+\Delta t, \zeta)=z\left(t, \zeta_{1}(\zeta)\right)$. Using the last equations, we can write

$$
\begin{aligned}
& z(t+\Delta t, \zeta)-z(t, \zeta)=\frac{d z}{\partial t} \Delta t+\ldots \\
& z(t+\Delta t, \zeta)-z(t, \zeta)=z(t, \zeta 1)-z(t, \zeta)=\frac{\partial z}{\partial \zeta}[\zeta 1-\zeta]+\ldots
\end{aligned}
$$

where the dots denote infinitesimals of higher order. Then

$$
\frac{\partial z / \partial t}{\partial z / \partial \zeta}=\frac{\zeta_{1}-\zeta}{\Delta t}+\ldots
$$

Using Eqs (1.2) and (1.3), we obtain

$$
\begin{equation*}
\left.\operatorname{Im} \frac{\partial z / \partial t}{\partial z / \partial \zeta}\right|_{n=1}=\left.\frac{k p_{\theta}}{n \mid \partial z / \partial \zeta}\right|^{2},\left.\quad \operatorname{Im} \frac{\partial z / \partial t}{\partial z / \partial \zeta}\right|_{n=0}=0 \tag{1.4}
\end{equation*}
$$

These expressions constitute the nonlinear boundary conditions for determining the mapping function $z(t, \zeta)$. After transforming these conditions, we can rewrite them in the following equivalent form:

$$
\begin{align*}
& \operatorname{In} \frac{\partial z}{\partial \zeta} \frac{\partial \bar{z}}{\partial \tau}=-1 \quad \text { for } \zeta=\bar{\zeta}+i \tag{1.5}\\
& \operatorname{Im} \frac{\partial z}{\partial \zeta} \frac{\partial \bar{z}}{\partial \tau}=0 \quad \text { for } \quad \zeta=\xi+i 0 \\
& \left(\tau=p_{0} k t / m, \bar{z}=x-i y\right)
\end{align*}
$$

2. Self-ilmiler iolution, We seek the mapping function $z(t, \zeta)$ for our problem in the form

$$
z(\tau, \zeta)=\sqrt{\tau} z^{*}(\zeta)
$$

Here $z^{*}(\zeta)$ is an analytic function of the complex variable $\zeta=\xi+i \eta$, defined in the strip $0 \leqslant \eta \leqslant 1$. On the boundaries of the strip, as a consequence of the relations (1.5),
the following conditions must be satisfied:

$$
\begin{align*}
& \operatorname{Im} \frac{d z^{*}}{d \zeta} \bar{z}^{*}=-2 \quad \text { for } \quad \zeta=\xi+i \tag{2.1}\\
& \operatorname{Im} \frac{d z^{*}}{d \zeta} \bar{z}^{*}=0 \quad \text { for } \zeta-\xi+i 0
\end{align*}
$$

In addition, we require that $z^{*}(0)=0$.
The question of finding a complete solution of this problem remains open, however, we can point out a certain class of its solutions, Let us seek those solutions for which the quantity

$$
\operatorname{Im}\left(\frac{d z^{*}}{d \xi} \bar{z}^{*}\right)
$$

is a function of the single variable η. This condition leads to the conclusion that the quantity $\left|z^{*}\right|^{2}$ must be representable in the form

$$
\left|z^{*}\right|^{2}=\alpha(\xi)+\beta(\eta)
$$

Since $z^{*}(\xi)$ is an analytic function of ξ, it follows that $\alpha(\xi)$ and $\beta(\eta)$ must be connected by the differential equation

$$
\alpha_{E \xi}^{\prime \prime}+\beta_{n n}^{\prime \prime}=\frac{\alpha_{\xi}^{\prime 2}+\beta_{n}^{\prime 2}}{\alpha+\beta}
$$

Without giving the details of the transformations of this equation, we merely remark that all of its solutions can be obtained from the system of equations

$$
\left(\frac{d \alpha}{d \xi}\right)^{2}=c_{1}+c_{2} \alpha+c_{3} \alpha^{2}, \quad\left(\frac{d \beta}{d \eta}\right)^{2}=-c_{1}+c_{2} \beta-c_{3} \beta^{32}
$$

where c_{1}, c_{2} and c_{3} are arbitrary constants. From this system we determine the following essentially distinct types of solutions satisfying the boundary conditions (2.1):

$$
\begin{aligned}
& \text { 1) } z^{*}=\sqrt{2} \zeta, \quad z^{*}=\sqrt{\frac{2 p_{0} k t}{m}} \zeta \\
& \text { 2) } z^{*}=\frac{2}{\sqrt{\lambda \operatorname{si}, 2 \lambda}} \operatorname{sh} \lambda_{\zeta}, \quad z^{*}=\sqrt{\frac{4 p_{0} k t}{m \lambda \sin 2 \lambda}} \operatorname{sh} \lambda \zeta
\end{aligned}
$$

The first of these solutions corresponds to a one-dimensional motion of the liquid with streamlines parallel to the $O Y$-axis; the second of

Fig. 2 these is essentially multi-dimensional in nature. The flow picture in the x, y plane is depicted in Fig. 2. The equipotential curves of the resulting self-similar solution are given by the moving hyperbolas ($\eta=$ const, $0<\eta \leqslant 1$)

$$
\left(\frac{y}{\sin \lambda \eta}\right)^{2}-\left(\frac{x}{\cos \lambda \eta}\right)^{2}==\frac{4 p_{n} k t}{m \lambda \sin 2 \lambda}
$$

while the streamlines are the ellipses ($\xi=$ const, $0<\xi<\infty$)

$$
\left(\frac{x}{\sin \lambda \xi}\right)^{2}+\left(\frac{y}{\operatorname{ch} \lambda \xi}\right)^{2}=\frac{4 p_{0} k t}{m \lambda \sin 2 \lambda}
$$

Initially, the liquid occupies the two sectors adjacent to the $O X$-axis, the sector angle being given by $\alpha=\operatorname{arctg} \lambda, 0<\lambda<\infty$.
In conclusion, we note that, in spite of its artificial nature, the solution we have found may prove to be useful for the solution of certain special filtration problems; it may also
be used for determining the accuracy of approximate solutions and computational algorithms.

The authors thank E. F. Afanas'ev for the help he has given them.

REFERENCES

1. Galin, L. A., Unsteady filtration with a free surface. Dolk. Akad. Nauk SSSR, Vol. 47, Ni 4, 1945.
2. Galin, L. A., Some problems of unsteady motion of ground water. PMM Vol, 15. N ${ }^{2}$, 1951.
3. Galin, L. A. , On unsteady filtration under constant pressure on the boundary. PMM Vol. 15, Nㅗ 1, 1951.

Translated by J. F. H.

UDC 539. 31

SEPARATION OF THE ELASTICTTY THEORY EQUATIONS WITH RADIAL INHOMOGENEITY

PMM Vol. 38, N2 6, 1974, pp. 1139-1144
A. E. PURO
(Tallin)
(Received January 7, 1973)
The separation of a system of three elasticity theory equations in the static case to a system of two equations and one independent equation for a space with a radial inhomogeneity is presented in a spherical coordinate system. These equations are solved by separation of variables for specific kinds of radial inhomogeneity. In particular, solutions are found for the Lamé coefficients $\mu=$ const, λ (r) is an arbitrary function, $\mu=\mu_{0} r^{(\beta)} \lambda=\lambda_{0} r^{\beta}$.

While methods of solving problems associated with the equilibrium of an elastic homogeneous sphere have been studied sufficiently [1], problems with spherical symmetry of the boundary conditions have mainly been solved for an inhomogeneous sphere [2, 3].
For a particular kind of inhomogeneity dependent on one Cartesian coordinate, the equations have been separated completely in [4]. A system of three equations with a radial inhomogeneity in a spherical coordinate system is separated below by a method analogous to [4].

1. The equilibrium equations in displacements with a radial inhomogeneity and no mass forces are

$$
\begin{equation*}
(\lambda+2 \mu) \operatorname{grad} \operatorname{div} \mathbf{u}-\mu \operatorname{rot} \operatorname{rot} \mathbf{u}+\mathbf{i}_{r} \lambda^{\prime} \operatorname{div} \mathbf{u}+\mu\left(\mathbf{i}_{r} \times \operatorname{rot} \mathbf{u}+2 \frac{\partial u}{\partial r}\right)=0 \tag{1.1}
\end{equation*}
$$

Here $\lambda(r)$ and $\mu(r)$ are the Lamé coefficients dependent on the radius, \mathbf{i}_{r} is the unit vector in the radial direction, and u is the displacement vector. Let us write (1.1) in matrix form in spherical coordinates

$$
\begin{align*}
& \| a_{i \hbar} \mid \operatorname{col}\left(u_{r}, u_{0}, u_{\varphi}\right)=0 \tag{1,2}\\
& a_{\Lambda}=\mu\left[D_{\theta}{ }^{\circ} D_{\theta}+D_{\varphi}{ }^{2}\right]+\frac{\partial}{\partial r}\left[\lambda D^{\circ}+2 \mu \frac{\partial}{\partial r}\right]+\frac{4 \mu}{r}\left[\frac{\partial}{\partial r}-\frac{1}{r}\right]
\end{align*}
$$

